Mechanical engineering is dedicated to the analysis, design and fabrication of systems—machines, engines, products and technologies—that provide conversion between mechanical, electrical and thermal energies. Guided by faculty committed to providing a superior education, students in the mechanical engineering program benefit from early, frequent and intense exposure to real-world projects.

Why Mechanical Engineering at Florida Tech?
Students who choose to study mechanical engineering at Florida Tech enjoy small classes—which allow for a highly personalized learning experience—and the opportunity to get involved in immersive, team-oriented projects as well as cutting-edge faculty research. Another benefit to studying mechanical engineering at Florida Tech is the university’s proximity to NASA Kennedy Space Center, Florida Solar Energy Center and several other high-tech companies, which gives faculty and students the ability to stay involved with the latest advances in science and engineering.

Your First-Year Experience
You won’t have to wait to see what mechanical engineering is all about if you choose to enroll at Florida Tech. In addition to the all-important math and science courses you will take during your first semester, you will also complete Introduction to Mechanical Engineering. Takeaways from this dynamic, broad-based course include skills with engineering software, basic design proficiency and knowledge of best practices in manufacturing. As a freshman, you will also get hands-on experience in a physics laboratory and introductory software development course, which provide a foundation for success during your sophomore year.

Quick Facts
- The Bachelor of Science degree in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.
- A four-course nuclear technology curriculum is available to juniors and seniors in the program.
- Florida Tech is home to FCAR, the Florida Center for Automotive Research.
- High-achieving students may become members of Tau Beta Pi, a national engineering honor society.
Mechanical Engineering

Mechanical engineering encompasses four major subfields: design and structures, thermal-fluid sciences, control systems, and materials science and manufacturing.

What to Expect
The mechanical engineering program is a strong community of ambitious students and highly active faculty members. The environment is highly cooperative, with students often working in teams, and very hands-on. Students will find no shortage of exciting projects with which to get involved.

Specialized Labs
Mechanical engineering students learn in labs dedicated to experimentation and research in fluid dynamics and heat transfer, shock waves and rocket propulsion, robotics and automated manufacturing, mechatronics and instrumentation, combustion, and materials testing.

Outstanding Faculty
The mechanical engineering faculty includes a member of the National Academy of Engineering, three ASME fellows, two recipients of the NSF CAREER award and one recipient of a Young Investigator Award from the Office of Naval Research.

Senior Design
As seniors, all engineering students complete a capstone project that challenges them to design, develop, prototype and present a complex engineering system.

Human Touch
Our small student-to-faculty ratio means that students get lots of face-time with professors and often work closely with them in the laboratory on innovative research projects.

Student Organizations
• ASME (American Society of Mechanical Engineers)
• Pi Tau Sigma, the academic honor society for mechanical engineering students
• ASHRAE (American Society of Heating, Refrigeration & Air Conditioning Engineers)

Careers
Students who graduate with a degree in mechanical engineering are likely to find careers focused on the design and fabrication of mechanical technologies. Graduates of Florida Tech's mechanical engineering program have gone on to work for:

• Siemens
• Lockheed Martin
• Northrop Grumman
• Harris
• NASA

Graduate Study
Graduates of the mechanical engineering program at Florida Tech are prepared to pursue advanced degrees in mechanical engineering and related fields and have gone on to study at graduate schools such as:

• California Institute of Technology
• Stanford University
• Georgia Institute of Technology
• UC Berkeley
• Technical University (Eindhoven, The Netherlands)

Faculty Research Areas
Mechanical engineering faculty conduct research in diverse areas of interest, some of which include:

• structural mechanics
• solidification of metals
• laser applications
• design and control of robotic manipulators
• micro and nanotechnology in energy
• precision control and mechatronics
• automobiles
• energy conservation systems
• synthesis of mechanisms and machines

Specialized Labs
Mechanical engineering students learn in labs dedicated to experimentation and research in fluid dynamics and heat transfer, shock waves and rocket propulsion, robotics and automated manufacturing, mechatronics and instrumentation, combustion, and materials testing.

Human Touch
Our small student-to-faculty ratio means that students get lots of face-time with professors and often work closely with them in the laboratory on innovative research projects.

Graduate Study
Graduates of the mechanical engineering program at Florida Tech are prepared to pursue advanced degrees in mechanical engineering and related fields and have gone on to study at graduate schools such as:

• California Institute of Technology
• Stanford University
• Georgia Institute of Technology
• UC Berkeley
• Technical University (Eindhoven, The Netherlands)

Careers
Students who graduate with a degree in mechanical engineering are likely to find careers focused on the design and fabrication of mechanical technologies. Graduates of Florida Tech's mechanical engineering program have gone on to work for:

• Siemens
• Lockheed Martin
• Northrop Grumman
• Harris
• NASA

Graduate Study
Graduates of the mechanical engineering program at Florida Tech are prepared to pursue advanced degrees in mechanical engineering and related fields and have gone on to study at graduate schools such as:

• California Institute of Technology
• Stanford University
• Georgia Institute of Technology
• UC Berkeley
• Technical University (Eindhoven, The Netherlands)

Faculty Research Areas
Mechanical engineering faculty conduct research in diverse areas of interest, some of which include:

• structural mechanics
• solidification of metals
• laser applications
• design and control of robotic manipulators
• micro and nanotechnology in energy
• precision control and mechatronics
• automobiles
• energy conservation systems
• synthesis of mechanisms and machines